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Abstract
We find a mapping of the layered sine–Gordon model to an equivalent gas of
topological excitations and determine the long-range interaction potentials of
the topological defects. This enables us to make a detailed comparison to the
so-called layered vortex gas, which can be obtained from the layered Ginzburg–
Landau model. The layered sine–Gordon model has been proposed in the
literature as a candidate field-theoretical model for Josephson-coupled high-Tc

superconductors, and the implications of our analysis for the applicability of
the layered sine–Gordon model to high-Tc superconductors are discussed. We
are led to the conjecture that the layered sine–Gordon and the layered vortex gas
models belong to different universality classes. The determination of the critical
temperature of the layered sine–Gordon model is based on a renormalization-
group analysis.

1. Introduction

Two essential prerequisites for an analysis of superconducting materials are anisotropic models,
as initiated by Ginzburg [1], and the inclusion of vortices, as envisaged by Abrikosov [2].
Typical high-transition-temperature superconductors consist of copper oxide superconducting
planes separated by insulating layers. In the phenomenological description of high-Tc

superconductivity, one may use an anisotropic, continuous Ginzburg–Landau theory [1, 3, 4],
but only for not too large anisotropy. Note that the anisotropic, continuous model can be
mapped onto the isotropic Ginzburg–Landau model by an appropriate rescaling method [5].
However, in the case of extremely high anisotropy like in Bi2Sr2CaCu2O8, the discreteness
of the structure becomes relevant [6], and it becomes necessary to use a layered Ginzburg–
Landau model [3, 7] where the layers are coupled by Josephson or electromagnetic interactions.
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This provides a good basis for the discussion of the vortex-dominated properties of high-
Tc superconductors. Some exact and some approximate mappings of the layered Ginzburg–
Landau model (i.e. the Lawrence–Doniach model [7]) onto various other statistical, field-
theoretical or spin models, like the layered vortex gas [3, 8–12] and the anisotropic XY
models [13–15], have already been discussed in the literature, and these models have also
been proposed and used for the description of the vortex dynamics in high-Tc superconductors.
Connections to sine–Gordon-type models [16–23] have also been explored in the literature.

The latter investigations are motivated by the well-known fact that the massless two-
dimensional (2D) sine–Gordon scalar field theory belongs to the universality class of the 2D–
XY spin model and consequently to that of the 2D Coulomb or vortex gas. The mappings
between these models and also the phase structure have been discussed in the literature in great
detail (see, e.g., [8–12, 16–18, 24–29]). Since the layered Ginzburg–Landau model can be
considered as the continuum limit of the anisotropic 3D–XY model (discrete in the z-direction
but continuous in the xy-planes), one might suggest that the field-theoretical counterpart of
the layered Ginzburg–Landau model should be a sine–Gordon-type model. However, the 3D
Ginzburg–Landau theory (in the London limit and in the absence of electromagnetic fields),
which can be considered as the continuum limit of the 3D–XY planar rotator, and the 3D sine–
Gordon model do not belong to the same universality class (see [30–32]), a phase transition
being absent in the 3D sine–Gordon case. Since layered models are always constructed from 3D
models by a suitable discretization of the derivative term in one of the spatial dimensions (see,
e.g., [33]), the equivalence of the layered vortex gas and layered sine–Gordon models remains
questionable. One purpose of this paper is to clarify this point by finding an exact mapping of
the layered sine–Gordon model to an equivalent gas of topological excitations, which in turn
can be compared directly to the layered vortex gas. We also consider the phase structure and
the critical behaviour of the N-layer sine–Gordon model by a renormalization group method,
and determine the relation of the critical parameter b2

c of the layered sine–Gordon model to the
critical temperature, as a function of the number of layers.

This paper is organized as follows. In section 2, we discuss the comparison of the layered
Ginzburg–Landau model to the layered sine–Gordon model, by a mapping of each model to an
equivalent gas of topological excitations. In section 3, we discuss the renormalization-group
(RG) flow of the layered sine–Gordon model. Conclusions are reserved for section 4.

2. Layered Ginzburg–Landau model versus layered sine–Gordon model

2.1. Mapping of the layered Ginzburg–Landau model to the layered vortex gas

The Ginzburg–Landau theory has been developed by applying a variational method to an
assumed expansion of the free energy in powers of |ψ|2 and |∂μψ|2, where ψ is a complex
order parameter (the inhomogeneous condensate of the superconducting electron pairs) and
|ψ|2 represents the local density of superconducting electron pairs (for a detailed discussion
see, e.g., [34]). Its detailed form can be found in equations (6-6) and (6-9) of [35]. Upon a
discretization of one of the spatial directions (say, the z-coordinate), one obtains the layered
Ginzburg–Landau (or Lawrence–Doniach [7]) model with the free energy (in natural units:
h̄ = c = ε0 = 1),

F = s
∫

d2r

(
N∑

n=1

(
α|ψn |2 + β

2
|ψn|4 + |∂xψn|2 + |∂yψn|2

2 mab

)
+

N−1∑
n=1

|ψn+1 − ψn |2
2 mc s2

)
. (1)

Here, mab and mc represent the intralayer and interlayer effective masses, s is the interlayer
distance, and N stands for the total number of layers. The sum over μ covers the spatial
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coordinates μ = x, y, z. The parameters α and β are discussed in equations (6-6) and (6-
8) of [35]. In order to investigate the vortex dynamics in the framework of the Ginzburg–
Landau theory, one has to consider the discretized model given in equation (1) in the London
approximation. One writes the complex, layer-dependent order parameter as ψn(�r) =
ψ0,n(�r) exp[iφn(�r)] with real ψ0,n(r), where the φn ∈ [0, 2π) are compact variables, and the
moduli ψ0,n are assumed to be constant and identical in every layer (i.e. ψ0,n(�r) = ψ0), which
is the London-type approximation. The London-type form of the layered Ginzburg–Landau
model with Josephson coupling can be mapped (see [3, 8–12]) onto the layered vortex gas. The
globally neutral layered vortex gas with N layers is characterized by the partition function (see
equation (2.3) of [11])

ZLVG =
∞∑
ν=0

z2ν

(ν!)2
N∑

n1=1

∫
d2r1

a2
. . .

N∑
n2ν=1

∫
d2r2ν

a2

×
∑

σ1,...,σν=±1
σν+γ=−σγ , γ∈{1,...ν}

exp

(
− 1

kBT

∑
α �=β

1

2
σα σβ V (rαβ , nαβ)

)
, (2)

where σα = ±1 is the charge of the αth vortex, a stands for the lattice spacing, kB is the
Boltzmann constant, T is the temperature, and the interaction potential V between two vortices
depends on their relative distance rαβ within the two-dimensional planes (rαβ = |�rα − �rβ |)
and on the distance nαβ across the planes (nαβ = |nα − nβ |), where nα is the layer in which
the αth vortex is located. There are 2ν vortices with fugacity z and these fulfil the neutrality
condition

∑2ν
α=1 σα = 0 . The positive (negative) vorticity is represented by positive (negative)

charges. The restriction to globally neutral charge configurations is ensured by the condition
σν+γ = −σγ for γ ∈ {1, . . . ν} in equation (2). Following [3, 8–12], we neglect interactions
between vortices separated by more than one layer, and this results in intralayer and interlayer
interaction potentials which have commonly accepted short-range and long-range asymptotic
forms given by (see, e.g., equations (2.5) and (2.6) of [11])

V (rαβ , nαβ = 0) = − ln
(rαβ

a

)
− √

λ
rαβ − a

a
, (3a)

V (rαβ , nαβ = 1) = b
√
λ

rαβ
a
. (3b)

The coupling λ ∼ a2 J⊥/J‖ is proportional to the ratio of the interlayer Josephson coupling
J⊥ to the intralayer coupling J‖, and b is a constant of order unity. The intralayer interaction
between the vortices is logarithmic for short distances, as in the case of the usual 2D Coulomb
or vortex gas, but linear for large distances. The interlayer interaction is always linear and
similar to the long-range intralayer interaction, but with an opposite sign. Within a layer,
vortices of opposite charge attract, whereas the positive prefactor of the linear term in the
interlayer interaction implies the formation of vortex stacks of like charges.

2.2. Mapping of the layered sine–Gordon model to an equivalent gas of topological excitations

The well-known sine–Gordon model in Euclidean space is defined via the action

SSG[ϕ] =
∫

d2r
(

1
2 (∂μϕ)

2 − y cos(b ϕ)
)
, (4)

where the minus sign of the periodic term is chosen so that the zero-field configuration remains
a (local, not global, infinitely degenerate) minimum. As usual, ϕ here is a dimensionless scalar
field, (∂μϕ)2 ≡ ∑2

μ=1(∂μϕ)
2, y is a fundamental Fourier amplitude, and b is a dimensionless

frequency. This model is well known to describe the Kosterlitz–Thouless–Berezinskii (KTB)
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phase transition [36] in two dimensions. If one adds a second layer which leads to the
appearance of two fields ϕ1 and ϕ2, one may devise the following natural ansatz for the
interlayer interaction term, 1

2 J (ϕ1 − ϕ2)
2, where J is the Josephson-type coupling whose

physical dimension is equal to the square of the inverse length. Indeed, the layered sine–
Gordon model with this particular interlayer interaction term has been proposed in [16, 17] for
the description of the vortex properties of Josephson-coupled layered superconductors. The
double-layer sine–Gordon model [16–18, 20, 37, 38] is thus given by the Euclidean action

S2LSG =
∫

d2r

(
1
2

2∑
n=1

(∂μϕn)
2 + 1

2 J (ϕ1 − ϕ2)
2 − y

2∑
n=1

cos(bϕn)

)

=
∫

d2r

(
1
2 (∂ϕ)

T(∂ϕ)+ 1
2ϕ

Tm2ϕ − y
2∑

n=1

cos(b f T
n
ϕ)

)
, (5)

where ϕ denotes the column vector ϕ = (ϕ1, ϕ2) characterizing the O(2) doublet, and the
f

n
are projectors f

n
= (δ1n, δ2n) whose components are given by Kronecker deltas. The

Josephson-type interlayer interaction corresponds to the following dimensionful mass matrix
(see, e.g., [20]):

m2 =
(

J −J
−J J

)
. (6)

The mass eigenvalues are 0 and 2J . In order to perform the mapping of the double-layer
sine–Gordon model (5) onto a gas of topological excitations, we follow the scenario of [30],
where the partition function of the sine–Gordon model is identically rewritten in the form of
the partition function of a Coulomb gas. We should perhaps note that this mapping procedure
is inspired by the treatment in chapter 31 of [26]. One expands the exponential factor of
the integrand with the periodic potential in a Taylor series, expresses cos(b f T

n
ϕ) in terms of

exponential functions and introduces integer-valued variables, the charges σn = ±1, that fulfil
the neutrality condition. After these operations, one obtains

Z2LSG = N
∫

[Dϕ] exp
(
−S2LSG[ϕ]

)
= N

∞∑
ν=0

(y/2)2ν

(2ν)!
2∑

n1=1

∫
d2r1 . . .

2∑
n2ν=1

∫
d2r2ν

×
∑

σ1,...,σν=±1
σν+γ=−σγ , γ∈{1,...ν}

∫
[Dϕ] exp

(
−

∫
d2r

(
1
2ϕ

T(−1∂μ∂
μ + m2)ϕ + ibρTϕ

))
,

(7)

where 1 stands for the two-dimensional unit matrix which will be suppressed in the following.
The charge density ρ(�r), which depends on the configuration of the charges σ1, . . . , σ2ν and
on their positions �r1, . . . , �r2ν , constitutes a vector in the internal space of the fields (ϕ1, ϕ2)

characterizing the two layers, and reads ρ(�r) ≡ ∑2ν
α=1 σαδ(�r − �rα) f

nα
. We have thus obtained

a representation in which the 2ν charges have been placed onto the two layers, with the α th
charge on layer nα . Performing the Gaussian path integral in equation (7), we obtain

Z2LSG = N
∞∑
ν=0

(y/2)2ν

(2ν)!
2∑

n1=1

∫
d2r1 . . .

2∑
n2ν=1

∫
d2r2ν

×
∑

σ1,...,σν=±1
σν+γ=−σγ ,γ∈{1,...ν}

exp

(
−b2

2

∫
d2 p

(2π)2
ρT(− �p)( �p 2 + m2)−1ρ( �p)

)
, (8)

where ρ( �p) = ∑2ν
α=1 σα exp(i �p · �rα) f

nα
is the Fourier transform of the O(2) charge density. In

momentum space, the propagator can easily be calculated by matrix inversion, and this gives
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Z2LSG = N
∞∑
ν=0

(y/2)2ν

(2ν)!
2∑

n1=1

∫
d2r1 . . .

2∑
n2ν=1

∫
d2r2ν

×
∑

σ1,...,σν=±1
σν+γ=−σγ ,γ∈{1,...ν}

exp

(
−b2

2ν∑
α=1

2ν∑
γ=1

1

2
σασγ ( δ1nα δ2nα )

×
(

A(rαγ ) B(rαγ )
B(rαγ ) A(rαγ )

) (
δ1nγ
δ2nγ

))
. (9)

Here, the interaction potentials are (rαγ = |�rα − �rγ |)

A(rαγ ) =
∫

d2 p

(2π)2
e[i �p·(�rα−�rγ )]( �p2 + J )

�p2( �p2 + 2J )

= − 1

2π

(
1

2
ln

(rαγ
a

)
− 1

2

[
K0

(
rαγ
λeff

)
− K0

(
a

λeff

)])
, (10a)

B(rαγ ) =
∫

d2 p

(2π)2
e[i �p·(�rα−�rγ )] J

�p2( �p2 + 2J )

= − 1

2π

(
1

2
ln

(rαγ
a

)
+ 1

2

[
K0

(
rαγ
λeff

)
− K0

(
a

λeff

)])
, (10b)

where the momentum integrals can be performed using either dimensional regularization [26]
or ultraviolet (UV) cutoffs and the physically relevant, finite parts of the interaction potentials
consist of massless and massive scalar propagators. In the expression for the intralayer (A) and
interlayer (B) interaction potentials, a is the lattice spacing which serves as a short-distance
(UV) cutoff, K0 denotes the modified Bessel function of the second kind, and λeff = 1/

√
2J

is an effective screening length. The asymptotics of the interaction potentials read as follows
(γE = 0.55721 56649 . . . is Euler’s constant):

A(rαγ � λeff) ∼ − 1

2π
ln

(rαγ
a

)
, (11a)

A(rαγ � λeff) ∼ − 1

2π

(
1

2
ln

(
rαγ
λeff

)
+ ln

(
λeff

a

)
+ 1

2
ln(2)− 1

2
γE

)
, (11b)

B(rαγ � λeff) ∼ 0, (11c)

B(rαγ � λeff) ∼ − 1

2π

(
1

2
ln

(
rαγ
λeff

)
+ 1

2
ln(2)− 1

2
γE

)
. (11d)

Here, a � λeff is assumed. The partition function of the double-layer sine–Gordon model is
thus identically rewritten in the form of a partition function for a gas of topological excitations,
which we would like to call the ‘layered sine–Gordon gas’, and which is given by

Z2LSG = N
∞∑
ν=0

(y/2)2ν

(2ν)!
2∑

n1=1

∫
d2r1 . . .

2∑
n2ν=1

∫
d2r2ν

×
∑

σ1,...,σν=±1
σν+γ=−σγ ,γ∈{1,...ν}

exp

(
−b2

2ν∑
α �=γ

1
2σασγ {δnαnγ A(rαγ )

+ (1 − δnαnγ )B(rαγ )}
)
, (12)

where the contact terms α = γ are treated separately (the latter modification leads to a
physically irrelevant renormalization of the partition function). The frequency b is inversely

5
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proportional to the temperature, b2 = 2π/(kBT ), and the Fourier amplitude y is related to

the fugacity z by the relation z2ν/(ν!)2 = (y/2)2ν/(2ν)!, i.e. y = 2z
(
(ν+1)ν
ν!

)1/(2ν)
, where

(a)n = �(a + n)/�(a) is the Pochhammer symbol.

2.3. Comparison of the layered sine–Gordon and layered vortex gas models

The partition functions (2) of the layered vortex gas and (12) of the layered sine–Gordon gas
have the same structure. Therefore, the intralayer and interlayer interaction potentials can
thus be compared directly. A comparison of equations (3a) and (10a) reveals that, for small
distances (r � λeff), the intralayer potentials have the same logarithmic behaviour for both
models. This is not unexpected, since in this case the vortices of a given layer are independent of
the effects in the other layer. However, for large distances (r � λeff), the intralayer potential is
logarithmic for the gas of topological excitations of the layered sine–Gordon model in contrast
to the layered vortex gas, whereas the long-range intralayer potential is dominated by a linear
term. The difference between the two models becomes even more significant if one compares
the interlayer potentials which are different for the two models both in the short-range as well
as the long-range regime (see equations (3b) and (10b)).

The significant differences of the long-range behaviour of the interlayer potentials strongly
indicate different long-distance (infrared, IR) physics. We should note that the long-range
behaviour of the potentials in equations (11b) and (11d) generalizes to a leading asymptotics
of the form −1/(2πN) ln(rαγ /λeff) for an N-layer system with the interlayer interaction given
in equation (13) below. Thus, the addition of more layers does not change the qualitative
behaviour of the long-range potentials (linear versus logarithmic). We conclude that there is a
strong indication that these models belong to different universality classes, and that the layered
sine–Gordon model is not suitable for describing the vortex properties of Josephson-coupled
layered superconductors if a linear long-range potential between the topological defects is
assumed.

3. Phase structure of the N -layer sine–Gordon model

From a conceptual point of view, it is interesting to study the critical temperature as a function
of the number of coupled layers, in the framework of an appropriate generalization of the
double-layer model defined in equation (5) to N layers. The discretization of the derivative
term for the z-direction in the three-dimensional sine–Gordon Lagrangian results in a model of
coupled 2D systems [33], which has been called the N-layer sine–Gordon model. It consists
of N coupled 2D sine–Gordon models of identical ‘frequency’ b [22, 33], each of which
corresponds to a single layer described by the scalar fields ϕi (i = 1, 2, . . . , N). Its bare
action reads (see equation (2) of [22])

SNLSG =
∫

d2r

[
1

2

N∑
i=1

(∂μϕi)
2 +

N−1∑
i=1

J

2
(ϕi+1 − ϕi)

2 +
N∑

i=1

yi cos(bϕi)

]
. (13)

We have implicitly defined the mass matrix m2
N

of the N-layer model,
∑N−1

i=1
J
2 (ϕi+1 − ϕi)

2 ≡
1
2ϕ

Tm2
N
ϕ. The action is invariant under a joint shift of all fields ϕi → ϕi + 2π/b applied to

all layers i = 1, 2, . . . , N , a symmetry which corresponds to a single zero-mass eigenvalue of
the matrix m2

N
. Indeed, after a suitable rotation of the mass matrix [22, 33], it becomes evident

that the N-layer sine–Gordon model consists of N − 1 massive 2D sine–Gordon fields and a
single massless 2D sine–Gordon field. The periodicity in the internal space spanned by the field
is broken explicitly for the massive fields, and the spontaneous breaking of periodicity of the
single massless mode accompanies the phase transition for small values of fugacities [20, 22].

6
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The rotated N-layer sine–Gordon model has already been investigated by the Wegner–
Houghton renormalization group method on the basis of the mass-corrected linearized scaling
laws [33] and by a general perturbative treatment [22]. Both approaches predict a linear
increase of the critical parameter b2

c with increasing number N of the layers, according to
the formula b2

c = 8πN (see equation (35) of [22]). Equation (12) clearly implies that
b2

c = 8πN = 2π/(kBT ), and we therefore obtain Tc ∝ 1/N for the N-layer model. This
decrease of the transition temperature is perfectly consistent with the general properties of the
model in the limit of an infinite number of layers. Namely, one can intuitively assume that
the single remaining zero-mass eigenvalue cannot make a decisive contribution to the phase
structure of the model in the limit N → ∞, with N − 1 modes being massive. Indeed, in the
limit of an infinite number of layers, one recovers the 3D sine–Gordon model which does not
undergo any phase transition at all [30, 31, 33].

4. Summary and conclusions

The main result of this paper (see section 2) is the indirect comparison of the layered sine–
Gordon model to the layered Ginzburg–Landau theory: as we have shown, both models
can be mapped to different gases of topological excitations. These are the layered vortex
gas for the layered Ginzburg–Landau theory (see equation (2)) and the equivalent gas of
topological excitations for the layered sine–Gordon model (the ‘layered sine–Gordon gas’; see
equation (12)). In general, we find that if a long-range confining linear potential is required
for a description of the Josephson-coupled layered high-Tc superconductors, then the system
of coupled 2D sine–Gordon models is not suitable to describe the vortex properties of these
materials: scalar-field propagators cannot provide linear potentials in two dimensions. For
short distances, a logarithmic behaviour can of course be approximated quite well by a linear
potential (see [13], ln(1 + r) ∼ r for r � 1), but this observation is irrelevant for the
phase structure of a system, which is determined only by the long-range interactions. In any
case, we are led to the conjecture that the layered sine–Gordon and the layered vortex gas
models belong to different universality classes. Using a renormalization group analysis of the
generalized N-layer sine–Gordon model as described in section 3, we find that the critical
temperature of the layered sine–Gordon gas reads fulfils kBTc = (4N)−1. This is inconsistent
with high transition temperatures for multi-layer systems and in strong disagreement with
experiment [39–41]. For example, in [40], for YBa2Cu3O7−δ the single-layer (2D) transition
temperature was determined as 30.1 K, and with N = 2 layers, the experimental result was
TKTB = 58.2 K, suggesting Tc ∝ N for a small number of layers.

Let us conclude this paper with a perhaps somewhat surprising outlook. The decrease of
the transition temperature with the number of layers is tied to the gradual ‘disappearance’ of
the ‘influence’ of the only remaining zero-mass mode in the matrix of the Josephson-coupled
layered sine–Gordon model, in comparison to the N − 1 massive modes, as N → ∞. If we
choose the mass matrix differently, e.g., ϕT M2ϕ = G(

∑N
n=1 anϕn)

2, with the (only) condition

a2
n = 1, then there are N − 1 massless modes and only one massive mode. In that case,

we find (see [42]) Tc ∝ N−1
N , and this result is in agreement with the analysis presented

in [43] for magnetically coupled layered superconductors. In this case, the interaction potentials
corresponding to equation (11) between the topological defects have the same asymptotic
behaviour as those given in [3, 43] for the magnetically coupled case. After all, a layered
sine–Gordon-type field theory with a suitable interlayer interaction might prove to be useful
for the description of vortex dynamics in (magnetically coupled) layered systems, but not in
the expected direction, which would have been the Josephson-coupled case.
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